
JPL Publication 91-7

///4,/- <'i,/ , '/_::"

A General Software Reliability Process
Simulation Technique

Robert C. Tausworthe

(_:AC,\-C ,,-I _,')O3 7) A

RFLIA_[LITY p R(,C L S L;
,.; [M)IL A T [LLj_,J t _IC H"l _[_' •

C SCI..

C, 31ol

i_92-1?_q2

April 1,1991

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

g- . -_

JPL Publication 91-7

A General Software Reliability Process
Simulation Technique

Robert C. Tausworthe

April 1,1991

National Aeronautics and

Space Administration

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, California

ii JPL 91-7

The research described in this publication was carried out by the Jet Propul-
sion Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not constitute or im-

ply its endorsement by the United States Government or the Jet Propulsion
Laboratory, California Institute of Technology.

JPL 91-7
.°°

Ul

Acknowledgements

The author would like to acknowledge and thank Dr. Michael

Lyu of the University of Iowa and Dr. Brian Beckman of the Jet

Propulsion Laboratory for their encouragement, review, and sugges-

tions in the preparation of this publication.

iv JPL 91-7

Abstract

This publication describes the structure and rationale of the gen-

eralized software reliability process, together with the design and

implementation of a computer program that will simulate this pro-

cess. Given assumed parameters of a particular project, the users

of this program are able to generate simulated status timelines of

work products; numbers of injected anomalies; and the progress of

testing, fault isolation, repair, validation, and retest. Such timelines
are useful, in comparison with actual timeline data, for validating

the project input parameters, and for providing data for researchers

in reliability prediction modeling.

JPL 91-7 v

Contents

3

4

INTRODUCTION

DISCRETE EVENT PRELIMINARIES 5

2.1 Counting Events 7

2.2 Multiple-Event Processes 9

2.3 Multiple Categories of Events 11

2.4 Secondary Event Processes 11
2.5 Limited Growth Processes L2

THE WORK ACTIVITY MODEL 15

THE SIMULATION TECHNIQUE 17
4.1 Event Status Monitors: Output 18

4.2 The Simulation Input Parameters 20

4.3 The Simulation Algorithms 23
4.3.1 Initialization 24

4.3.2 Set Current Staffing and Resource Levels 25
4.3.3 Document Construction 25

4.3.4 Document Integration 26
4.3.5 Document Inspection 27
4.3.6 Document Correction 27

4.3.7 Code Construction 28

4.3.8 Code Integration 28
4.3.9 Code Inspection 29
4.3.10 Code Correction 29

4.3.11 Test Preparation 30

4.3.12 Testing 30
4.3.13 Fault Identification 31

4.3.14 Fault Repair 31

4.3.15 Validation of Repairs 32

4.3.16 Retesting 32

4.4 Output and Display of P_esults 32

4.5 Preliminary Rate Functions 33
4.5.1 Document Construction Rate 34

4.5.2 Document Integration Rate 34

4.5.3 Document Inspection Rate 35
4.5.4 Document Correction Rate 36
4.5.5 Code Construction Rate 36

vi JPL 91-7

4.5.6 Code Integration Rate 36

4.5.7 Code Inspection Rate 37

4.5.8 Code Correction Rate 37

4.5.9 Test Case Preparation Rate 37

4.5.10 Test Failure Rate 38

4.5.11 Fault Identification Rate 38

4.5.12 Fault Removal Rate 39

4.5.13 Repair Validation Rate 39

4.5.14 Retesting Rate 39

EXAMPLE AND COMMENTARY 41

CONCLUSION 47

REFERENCES 49

List of Figures

Document Construction, Integration, and Inspection 42

Code Construction, Integration, and Inspection 43

Defect Discovery and Correction 44

Fault Injection, Discovery, Correction, and Repair 45

Appendix

HYPOTHETICAL EXAMPLE 51

JPL 91-7 1

1 INTRODUCTION

Reliability is probably the most important quality attribute of systems taken

as a whole, although safety, availability, and usability may also rank very high

on the priority list. Reliability is defined as the probability that a system or en-

tity will perform as required for a specified period of time under a given usage.
This basic definition applies to all systems, subsystems, and individual units,

including those which contain, or consist solely of, software. An instance of

the system or entity not preforming as required is termed a failure. Although

hardware and software failure mechanisms are totally different, there are many

analogies among their characteristics, and many of the same mathematical tech-
niques for characterization apply.

Reliability is not directly measurable, but must be inferred through model-

based evidence. Quantities that are related to reliability and that are often used

as quality indicators include [1]

• the instantaneous rate of failure, called the rate of occurrence of failure

(ROCOF).

• the time-to-failure (TTF), described by a probability distribution, or by

the mean of this distribution (MTTF).

• the number of faults manifest, described by a distribution, or expected

value, or density per unit product.

Software developers produce documents, or specifications, and source code

as work products. Developers sometimes make errors, or mistakes, that lead to

defects and faults in these products. In this publication, we shall use the term

defecl to mean the result of an error made in a document, and the term fault to

mean the result of an error made in the code. We shall use the term anomaly

to refer generally to either. Anomalies manifest themselves as departures from

requirements observed as failures during executions or as items of concern dur-

ing inspections. We shall refer to the removals of anomalies of inspections as
corrections, and the removals of faults found in testing as repairs.

Documentation usually defines acceptable performance of the code. But

when an error is made during the expression of a requirement, defective per-

formance may be specified, which will later be observed as a usability problem,

provided that the code is a faithful implementation of its specifications. Clearly,

the reliability process definition must encompass requirement defects, as well as

design, coding, and ancillary anomalies.

The numbers of anomalies in software products, as well as the nature of those
anomalies, are matters of fact and not of probability; yet, the possibility that

anomalies will be encountered and observed under given circumstances within a

stated time span is uncertain. Software reliability modeling is a set of techniques

that applies probability theory and statistical analyses to assess the achieved

reliability of work products, both quantitatively and objectively.

2 JPL 91-7

Software reliability quantification has been the subject of wide study since

its modeling by Jelinski and Moranda [2] in 1972. Since that time, at least

40 different models [3] have been proposed. See the books by Muss [4] and

Shooman [5] and the article by Abdel-Ghaly, et al. [6] for comparisons.

The primary focus of these studies is on methods that assess current reliabil-
ity and forecast future operability, based on rational assumptions and observable

failure data. None of the models extends over the entire reliability process; most

tend to focus only on failure observance during testing or operations. Moreover,

none of the forecasting models has emerged as "the best" predictor in all cases.

This may be due to a number of factors, such as oversimplification of the fail-

ure process, the quality of observed data, the lack of sufficient data to make

sound inferences, and/or serious differences between the proposed model and

the underlying true error process(es). It is conceivable that the nature of the

underlying failure process(es) may differ among individual software develop-
ments.

The usual assumptions for reliability modeling are:

1. The effects of all anomalies are independent.

2. The times between failures are much greater than the instruction cycle of

the computer.

3. Test input is randomly selected.

4. The test space "covers" the use space.

5: All failures are observed when they occur.

6. Faults are immediately removed upon failure, or not counted again.

This publication attempts to characterize the entire reliability process, in-

cluding the development of new documentation and the integration of existing

documentation into the set of specifications and manuals that form the final

document product; the construction of new code and the integration of reusable

modules that form the final operational product; the inspection, testing, and

failure observance processes; and finally, the anomaly isolation and removal pro-

cesses. The composite process is implemented as a Monte Carlo simulation tool,

Softrel 1, in which development project parameters and sub-process rate func-

tions may be altered to accommodate various particular modeling hypotheses.

A much more restricted simulation was reported by Levendel [7].

In particular, the last three reliability modeling assumptions above are not

directly incorporated into the technique presented here. Whether the test space

actually matches the use space is rarely known. We certainly hope that the test

designers have done a proper job, but we cannot be sure. Simulation can mimic

the testing method, but it cannot extrapolate what will happen in operations

1_)1990, California Institute of Technology, P_adena, CA.

JPL 91-7 3

afterward (a subsequent version could, however, simulate the test vs. usage

coverage). Simulation can imitate a random error in detecting a failure when
one has occurred, as well as any system outage that may result due to an

observed failure. Furthermore, simulation can track those faults which have

been removed, and those which have not, so multiple failures due to the same

fault can be readily simulated. Thus, the set of assumptions about the reliability

process is much less restricted for simulation than for the "usual" models.

The simulation approach avoids difficulties in obtaining closed-form solutions

to intricate multi-activity reliability process problems, obviates the need to over-

simplify the process model merely in order to obtain simplified statistics (such

as mean behavior), and reveals the truer stochastic nature of the reliability

process. Realizations (i.e., sample functions) of the process are nol smooth, as
the mean process behavior is apt to be. Monte Carlo simulations display the

inherent variability of the process from one realization to the next. Observers

of the simulations will better understand that fitting a given assumed model to

data points obtained from a single observed process may perhaps not produce

realizations typical of the given data.

The first purpose of Softrel is experimental: not to provide reliability as-

sessments directly, but to supply data for studying the merits of the various

existing predictive models. Reliability modelers seldom have the luxury of sev-

eral realizations of the same failure process. Nor are they provided with data

that faithfully match the metrics of their models. Nor are they able to probe

into the underlying error and failure mechanisms in a controlled way. Rather,

they are faced with the problem of not only guessing the form and particulars

of the underlying error and failure random processes from the scant, uncertain

data they possess, but also with the problem of best forecasting future failures

from that single data set. The simulator solves the latter problem when given

a hypothesized answer to the former. That is, Softrel enables the investigation

of such questions as, How typical are the observed data to that emanating from

a non-homogeneous Poisson process with the following characteristics? and

Which of the following prediction methods is the best under the following as-
sumptions? Softrel is thus a tool that can assist in evaluating sensitivities of

predictions to various error and failure modeling assumptions.

The second use of Softrel is predictive. Once the entire reliability process and

its parameters have been simulated, including variable manpower and schedul-

ing of activities, trade-offs can be made to optimize resource allocations for

construction, inspection, and testing, and to determine the merits and proper

level of inspections both during and after construction of documents and code.
The simulation technique presented here does not necessarily assume sta-

tionary or homogeneous event statistics, nor that activities must occur in any

particular order, nor that activities are entirely completed in any given time

interval. Manpower and resources can be applied to arbitrary activities in an
arbitrary number of arbitrarily scheduled time slots.

Softrel recognizes that the lack of documentation and its defect content

4 JPL 91-7

at any given time are related to the number of faults being injected into the

code. If users have measured such effects in past projects, they may use this

information to optimize resource and schedule planning. The construction and

integration of reusable documents and code are characterized only to the extent
that, as document and code units accumulate at specified rates, defects and

faults become a part of the products at specified rates.

Softrel also allows simulation of imperfect correction and repair, and simu-

lation of anomaly reinjection into products as a result of these activities. Addi-

tionally, since tests cannot be run unless test cases and computer resources are

available, Softrel simulates the generation and application of test cases, and the

corresponding consumption of resources.

JPL 91-7 5

2 DISCRETE EVENT PRELIMINARIES

The fundamental assumption of the reliability process simulation technique is

that every stochastic event that occurs is the result of an underlying Markoff

process [8]. A Markoff process is a time series of values z(t) whose future

statistics depend only on the current value of the process and a rate function,

call it fl(t), where _/(t) dt for small enough dt acts as the conditional probability

that the event occurs in the interval (t, t + dr), given that it had not occurred
before t.

If 0 and £ denote the states of an event, 0 in effect before the event and

E after its occurrence, then a particular member of the stochastic time series

defined by {_(t), O, £} is called a sample function, or realization, of the general
discrete-event Markoff process.

The statistical behavior of this process is well-known: The probability that

event £ will have occurred prior to a given time t is related by the expression

Prob{£ occurs in (0, t)} = P(C,t) = 1 -exo - #(r)dr (1)

When the events of interest are failures, fl(t) is often referred to as the process

hazard function.

If the integral of f?(t) is known in closed form, the event probability vs. time
can be written down and analyzed. In all but the simplest cases, however, this

analysis will require the aid of a computer. Even when the integral cannot be

put in closed form, the integration can still be evaluated by using relatively

simple, straightforward numerical analysis on a computer.

But if many related events are intricately combined in a problem, the like-

lihood of a closed-form solution for event statistics dims considerably. The ex-

pressions to be solved can easily become so convoluted that calculation of results

requires a computer programmed with comparatively complex algorithms.

Alternatively, this single discrete-event process can be simulated rather eas-

ily, as illustrated by the computer algorithm in the following C language seg-
ment:

/* dt ie assumed set prior to this point */

event = 0;
t=0.;

while (event == 0)

{ t += dr;

if (chance(beta(t) * dr))

event++;

}

/* the event has occurred at this point */

JPL 91-7

The dt in such simulations is always chosen such that the variations in _(t)

over the incremental time intervals (t, t + dr) are negligible (for fidelity in
instantaneous behavior), and such that B(t)dt < 1 (so that the instantaneous

event probability is not unity). This type of discrete-event process simulation
is called a time-driven event detection architecture.

Another approach to discrete-event simulation results in an event-driven pro-

cess simulation architecture. In this scheme, the computer schedules the event
for occurrence at some random later time, then waits until its virtual clock ticks

out the appointed time, whereupon the event is made to occur. In its purest

form, a simulator based on this architecture would compute the overall proba-

bility distribution of the event occurrence (see Eq. 1) by numerical integration
for all values of t. Then it would pick the event time by using a random number

generator having this distribution, and insert this time-tagged event into an

event queue. However, if _(t) is changing dynamically and stochastically due to
occurrences of other interacting events, the pure event-driven simulation tech-

nique cannot be applied. In simulating the occurrences of several interacting
events, only the next-occurring event can be scheduled at any given time de-

terministically. After this event occurs, the next subsequent event can then be
scheduled, and so on. The complexity of this stochastic event-driven simulation

thus becomes high. More information on event-driven process simulation may
be found in [9].

Time-driven event simulation, on the other hand, does not schedule events,

but allows them to "happen." It requires only examining t in dt-intervals using

fl(t) up to the time of occurrence, rather than computing P(o¢, t) for all t. More-

over, the algorithm retains its simplicity, even when _(t) is related dynamically
and stochastically to other interacting events. It was for this reason that the
time-driven event detection architecture was chosen for SoRrel.

Time-driven event detection simulation is a form of system dynamics sim-

ulation, with the distinction that the observables are discrete events randomly

occurring in time. In systems dynamics simulations, the observables are typ-
ically non-stochastic and non-discrete. For more information on the systems

dynamics approach, the reader may consult [10].

All examples given in this publication are illustrated in the C language. For
brevity, and to focus on the core algorithms, declarations and incidental code

are omitted. In the code segment above, chance(x) compares a [0, 1)-uniform

random() value with x, thus attaining the specified conditional probability func-
tion. The chance function may be achieved by a macro definition,

double random(void);

#define chance(x) (random() < X)

JPL 91-7 7

2.1 Counting Events

If we do not stop the iteration in the previous algorithm when the event occurs,

but instead continue to count the occurrences over a given interval (0,t), the
simulated event may now occur a random number of times. The algorithm for
this simulation evolves to

/* t and dt are assumed set prior to this point */

events = 0;
x=O.;

while (x < t)

{ x += dr;

if (chance(beta(events, x) * dr))

++events;
}

/* the event has occurred a number of times at this point */

In this example, the use of beta(events, x) acknowledges that the tran-

sition rate function may not only change over time, but also may be sensitive

to the number of event occurrences up to the current time. Note that the

counter, events, has been renamed in the plural to acknowledge that multiple

occurrences are being counted.

Mathematically, we use j3n(t) to denote that n occurrences of the event have

occurred prior to t. When j3n(t) = j3n is independent of time, the process is

said to be homogeneous; otherwise, it is nonhomogeneous. For a homogeneous

process, fin denotes that n occurrences of the event have occurred prior to

starting the current process clock.

The probability Pn(t) that n Markoff events occur in an interval (0, t) is

known to satisfy the Kolmogoroff equation [8]

Pn(t)
- _.(t) Pn(t) + _n-l(t) en-,(t) (2)

dt

where fli(t) = 0 and Pi(t) = 0 for i < 0. The solution takes the recursive form

Po(t) = e -xo(°'') (3)

//Pn(t) -: _n-l(r)Pn-l(r) exp[An(O, r) - An(0, t)] dt (4)

J?An(to, t1) = _,(7") dr (5)

For n > 1. In the homogeneous case, _,(0,/) = tint.
The probability that an event has not occurred prior to time t, namely, P0(t),

above, agrees with Eq. 1. A general closed-form solution for P,_(t) for n > 0,

unfortunately, is unknown.

8 JPL 91-7

When the rate of occurrence is independent of the number of past occur-

rences, or when _n(t) = _(t) is independent of n, then it is well-known and

straightforward to prove from the above formula that the number of times the

event occurs is governed by the Poisson distribution,

P.(t) = Prob{n = n} - A"(O't)--e-X(°")n! (6)

Z2',\(to,q) = _(r)dr (7)

The time series of such events is understandably termed a Poisson process. In

the homogeneous case, A(0, t) = _t.

The statistics of Poisson occurrences in the interval (to, tx) are the same

as over (0,¢1 -to). In particular, the mean and variance of occurrences over a
t-length interval are

n = E{n}=A(O,t) (8)

A(0,t) (9)O"n

a,_ 1 1
(10)

n t)

where E{} represents the statistical expectation operator.

One may note from Eq. (10) that, as n increases, the percentage deviation of

the process decreases; this signifies that Poisson processes involving large num-
bers of occurrences appear to become relatively regular. If physical processes

appear more irregular than this, we shall not be able to simulate them using
the Poisson form.

The Poisson process is easily simulated. The restrictions imposed earlier,

namely, that _,(t) be nearly constant over the interval of observance and that

_,(t) dt < 1, no longer need be imposed when we are merely counting events

over the time interval, provided we can compute A(0, t) and have a random

number generator capable of producing Poisson-distributed samples.
Thus, if we are interested in the overall number of events that have occurred

in a given time interval of a Poisson process, and not in the precise times of

occurrence of each event, we can simplify the event-counting program merely to

#define produce(x) random_poisson (x)

events = produce(lambda(O, t)) ;

where random_poisson() is a subprogram that returns a Poisson-distributed

random value given the parameter x, and lambda() is the cumulative hazard.

An algorithm for generating Poisson random numbers may be found in Knuth

[111.

In this example, we have equated the term produce with random_poisson

to emphasize the fact that a resource lambda is producing something, rather
than that the number of events is merely a random number of a given type.

JPL 91-7 9

Other Markoff-event processes could conceivably be simulated using the tech-

nique above, but with random_poisson replaced by random_number. The prob-

lem with this formulation is that the equivalent cumulative hazard function

lambda() and random_number generator are unknown, as noted above.

We may avert such problems, however, by concentrating on the fine struc-

ture of the event process, slicing the (0, t) interval into dt time slots, observing

the behavior in each slot, and progressively accumulating the details to ob-

tain the overall event count profile. The independence of random variables in

non-overlapping intervals of a Markoff process guarantees that this accumulated

value possesses the same overall statistics as events formulated above. When

the process does depend on the event history and is non-homogeneous, it is

necessary merely to choose dt in the simulator so that

t+at ft,(t) dt _ fl,_(t) dt (11)

and ft,(t)dt < 1. That is, we must consider intervals small enough that the

process is homogeneous in each interval, with n inherited from one interval to
the next.

t=0.;
while (t < t_max)

{ n = produce(lambda(ev_ts, t, t + dr));

events += n;
/* n is the fine structure */

t += dr;
}

Thus, even if a given Markoff process is not Poisson-distributed over long

periods of time, it may yet be simulated by a set of Poisson processes juxtaposed

in small enough adjacent non-overlapping time intervals. The time slice dt may

be chosen small enough that the probable number of ++events per slice is small,

a condition fulfilled when _, (t, t + dr) is small. If a time interval begins in state

n (i.e., after the nth occurrence of/;), then _,_(t) will not likely switch to _,,+1 (t)

in the interval if the)_, (t, t + dr) is small. Processes that can pragmatically be
represented thus are here called Poisson interval processes, or piecewise-Poisson

processes.
For the remainder of this publication, we shall presume that processes of

interest are of the piecewise-Poisson variety. We shall reflect on the implications

of this assumption later, after looking at an example.

2.2 Multiple-Event Processes

Let us next consider the occurrences of several independent events, C1.... , Ej,

with rate functions fl_,_l(t) ,fl_,/l(t), respectively, taken together as a class.

10 JPL 91-7

We may view the multi-event activity as if f algorithms of the single-event

variety above were running simultaneously, each with its own separate rate

function, beta[i] (n, t), controlling the nth occurrence of event Ei at time t.

The probability that none of the events has occurred by time t is

1

Po(t) = P_i](t)... P_'t](t) = exp(- _ A[_](0, t)) = e-_°(°'') (12)
i=1

with)b(0, t)= _i/=l ,_i](0,t).

If each event is governed by a non-homogeneous Poisson process, then the

first event occurrence statistics are of the non-homogeneous Poisson variety,

with parameter _(0, t). Because of behavior-independence over non-overlapping

time intervals, we may thus simulate the class-event occurrence process as a

single piecewise-Poisson process governed by its composite rate function,

!

,_(t0, tl) = _],_(t0, tl) (13)
i=1

When one of the events occurs in a very small interval (t, t + dt), the probability
that it was ¢fi is merely the relative occurrence rate

Prob{EilE in (t, t + dr)} - V'! atilrt_ (14)
Z-.,j=I t-,nj,_]

in which nk, k = 1...,/are the numbers of occurrences of the corresponding

events prior to t. When given the fact that one of the events has occurred, we

can simulate which one it was by using a [0, 1)-uniform random number u to
select that event £_ whose index i satisfies

i-1 i

__.,_b,_(t) < u_(t) < __,13b_](t) (15)
j=0 j=l

where fl[,°]o(t) = 0 and _(t) = ____j_l_(t). This selection is expressed algorith-
mically by

int event_index(n, t)

{
s = betasum(t);

x = random() * s;

i=n;

while (x < s)

(S -= beta[JJ(events[i'], t);

i--;

JPL 91-7 11

return i;
)

When a new event £i is added to the distinguished class of events, we merely

readjust A(t0, tx) to include the corresponding A_l(to,tl) function and proceed

with the simulation. Similarly, when the class contracts to exclude an event _¢i,
[i]

we decrease A(to,tl) by A,,(t0, tl). This provides a simple and straightforward
method of simulating the effects of injection and removal of defects and faults

in computer software.

2.3 Multiple Categories of Events

Let the set of events {_ci : i = 1,...,n} that were classed together above now

be partitioned into categorized subsets according to some given differentiation

criteria. For example, faults in a program could be distinguished as being either
critical, serious, or cosmetic. The partitioning of events into categories likewise

partitions their rate functions into corresponding categories, and equivalently,

the bracketed indices of the rate functions into sets of integers.

The composite process remains of the piecewise-Poisson type; when an event

occurs, the algorithm in the preceding Subsection produces the index of the rate

function. Then, finding this index among the categorized index subsets relates

the event to the distinguished category of occurrences. The one event counter,

events, is replaced by an array of event counters, events[], in the simple

algorithm

i = event_index(n, t);

c = event_category(n, i);

++events[c];

The overall event classification scheme is thus encapsulated within a single

event category() function for the entire class of events.

2.4 Secondary Event Processes

Another type of event process of interest is the following: For each event of one

type that occurs, there is a uniform probability p < 1 that another event of

a different type is triggered. (For example, for each unit of code we generate,
there is a probability p that we inject a fault.) If there are n events of the

first type, then the k events of the second type are governed by the binomial
distribution function

P(kln) = Prob{k = kln = n} = (k) (1--p)r_-kpk (16)

12 JPL 91-7

When n itself is a Poisson random variable with parameter A(t0,tl), the

distribution of k also turns out to be Poisson, with parameter pA(t0, tl). Thus,
if we intend to simulate the occurrences of events of the second type without

actually counting events of the first type, we may merely use the produce()
function with parameter pA(t0, tl). However, if we wish to count events of the

first type as well, we need to have a random_binomial() function too. (Knuth
[11] also provides an implementation of this.) To emphasize here that a selection

is taking place among produced events, we define a select equivalence.

#define select(n, p) random_binomial(n, p)

The simulation code for the two processes now appears as

n = produce(lambda(tO, tl);

k = select(n, p);

The mean and variance of the selected numbers are

k = E{k} =np (17)

o'_ -- (1-p)pn=(1-p)k (18)

k - < _ (19)

Whenever p is near unity or k is large, the mean percentage variation of the

secondary process becomes small. When n derives from a Poisson process, its
statistics will appear relatively regular when n is large, as discussed earlier.

The secondary process may likewise appear very regular when k is large. The
assumption of equiprobable selection in the simulation may thus need to be

reconsidered in case the real-world physical process does not appear as smooth
as the simulation.

A categorization of events, as for fault criticality, can also be made for rates

of secondary events; certain categories of events can thus yield higher or lower

rates of secondary event occurrences. The code changes only slightly, to

n = produce(lambda(O, t)) ;

c = event_category(n, event_index(n, t);

k = select(n, p[c]);

2.5 Limited Growth Processes

When the final number of events N that a piecewise-Poisson process may reach

before it is terminated is specified in advance, we permit the normal growth of

events over time but stop the process after the Nth occurrence. This is easy if
the dt time slots are very narrow, but events may at times otherwise overshoot

N. To prevent overshooting, we define the process macro:

JPL 91-7
13

#define process(events, max. rate, increment)

{ if (max > events)

\
\

increment = min(produce(rate), max - events); \

else \

increment = O; \

events += increment; \

}

The value of events cannot grow beyond max and the increment can be ac-

cessed, if fine structure is needed, by the rest of the program.

We similarly define the find macro as the limiting form of the select func-

tion, which chooses among n events with uniform probability p:

#define find(events, max, n, p, increment) \

{ if (max > events) \

increment = min(select(n, p), max - events); \

else \

increment = O; \

events += increment; \

ImR__.__IN lf.ll TIONALLI

JPL 91-7 15

3 THE WORK ACTIVITY MODEL

Let us now focus on the various stochastic discrete-event-producing subprocesses

that are taking place concurrently in the reliability process. Event occurrences

in these subprocesses are interrelated and driven by the activities that are taking

place. The events of importance are:

, Composition, manifested by units of documentation and code produced.

This may well include the reuse of existing units undergoing deletions,

additions, and changes.

2. Human errors, which cause faults to be inserted in computer programs

and defects into associated documents.

3. Discoveries of defects and faults by inspection.

4. Corrections, or attempted removals of identified defects and faults.

5. Generation of test cases, which are required later to seek out program
faults and to validate corrections.

6. Failures, caused by execution of test cases that encounter faults.

7. Fault isolations, by which failures are made to correspond with the faults
that caused them.

8. Repairs, or attempted removals of identified faults.

9. Validations, or desk checkings and reviews of repaired anomalies.

10. Retests, or regressions of test cases to assure that faults have been suc-

cessfully repaired.

The activities of the life cycle during which these events occur are:

i, CONSTRUCTION: New documentation and code are generated while hu-

man errors inject faults and defects into them. Construction is divided

into separate documentation and coding subactivities.

, INTEGRATION: Reusable documentation and code are integrated with

new documentation and code, while human errors inject defects and faults.

Integration is divided into separate documentation and coding subactivi-
ties.

. INSPECTION: Defects and faults are detected through examination of

the software and documents. Inspections are also divided into document
and code subactivities. Inspections may fail to recognize anomalies when
encountered.

PRECEDING PAGE BLAt_K NOT FILMED

16 JPL 91-7

4. CORRECTION: Defects and faults are analyzed and corrected, in both

document and code subactivities. Correction may be ineffective, and new

anomalies may be injected.

5. PREPARATION: Test cases are generated.

6. TESTING: Test cases are executed and failures occur. Some failures may

not be observed, and those that ate observed may cause test outages.

7. IDENTIFICATION: Failure-to-fault correspondences are made. A partic-

ular isolation may assign the fault category as new, or previously seen,
both correctly and erroneously.

8. REPAIR: Faults are removed (not necessarily perfectly) and, possibly, new
human errors create new faults•

9. VALIDATION: Human checks affirm that repairs are effective, but may

err in doing so; they may also detect that repairs are ineffective (i.e.,

faults were not removed), and may detect other remaining defects and
faults•

10. RETEST: Re-execution of test cases verifies whether the repair is com-
plete. If not, the repair is marked for re-repair• New test cases are assumed

not needed. Retests may err in qualifying a fault as repaired•

These events and activities take place in scheduled time slots. For example,

the REPAIR activity may be assigned to take place between times tl and t2, with

an assigned staff level, and an allocated CPU (or other) resource. A complete

schedule is then a series of quintuples:

(activity, tbegin, tend, staff, CPU)

(activity, tbegin, tend, staff, CPU)

that together define the overall reliability process. Slot times may overlap or

leave gaps, at the discretion of the user. Such schedules are the natural outcomes
of development process planning and are of fundamental importance in shaping

the reliability process.

JPL 91-7 17

4 THE SIMULATION TECHNIQUE

A reliability process simulator should be able to respond to schedules and work

plans and to report the performance ofsubprocesses under the plan. By viewing

the simulated results, users may then replan, as necessary, to optimize. For this

reason, the simulator described in this report does not assume staff, resources, or

schedule models, but provides for quintuple inputs, as described in the previous
section.

The simulator should also capture the effects of interrelationships among
activities. For example, if documentation is missing, there is the added likeli-

hood that errors will be introduced during the coding phase; if documentation
contains defects, it is likely that they will translate into a number of faults in

the code unless they are removed before the coding activity; testing cannot take

place without test cases being prepared; repairs must follow identification and
isolation; and so on.

The software reliability process simulator Softrel complies with the prelimi-

naries in Section 2, conforms to the events and work activities of the preceding

Section, and characterizes all events as piecewise-Poisson Markoff processes with
explicitly defined event rate functions. The set of adjustable parameters input

to Softrel is called the model; the set of event status monitors that describes

the evolving process at any given time is called the set of facts. The model
and facts are collected into data structures, which are described below.

The model and facts structures are defined so as to accommodate multi-

ple categories of classes of events in the subprocesses of the overall reliability

process, with each model-facts pair representing a separate class of events. Be-
cause of the usual assumption that event processes are independent, the same

simulation technique could be applied simultaneously by using separate com-

puter processors running the same algorithms for each class. If only a single
processor were to be used, the same algorithms could be applied to each class

separately, but interleaved in time, or else they could be run entirely separately.

In entirely separate executions, the sets of results would be merged later into a

proper time sequence.

For simplicity, in its initial form, the simulator reported here only accom-

modates a single category of events for each of the reliability subprocesses.

Separate runs using different model parameters can be later merged to simulate

performance of a single process that has multiple failure categories, if desired.

Extension of Softrel to accommodate the more general case is not conceptually

difficult, but has not yet been undertaken. Later versions may possibly include

multiple failure categories, should this feature prove beneficial.

Softrel simulates two types of failure events, namely, defects in specification
documents and faults in code, all considered to be in the same seriousness cat-

egory, as reflected by the single set of model parameters. As an aside, we note
that the seriousness category is often indicated by the probabilities of observa-

tion and outage, and the lengths of outages: a process with these quantities high

18 JPL 91-7

will have highly visible and abortive failures, whereas when these probabilities

are low, the process will have rarely noticed, inconsequential failures.

The "documentation" currently simulated by SoRrel consists only of re-

quirements, design, interface specifications, and other entities whose absence or
defective nature can beget faults into subsequently produced code. Integration

and test procedures, management plans, and other ancillary documentation,

when deemed not to correlate directly with fault generation, are excluded. The

presumption is that the likelihood of a fault at any given time increases propor-

tionately to the amount of documentation missing or in error.

Softrel does not currently simulate the propagation of missing and defec-

tive requirements into missing and defective design and interface specifications;

both requirements analysis and design activities are currently combined in the

document construction and integration phases. All defects occur either in pro-

portion to the amount of new and reused documentation, to the amount that was

changed, deleted, and added, or to the number of defects that were reworked.

4.1 Event Status Monitors: Output

The event status indicators of interest, or facts, during the reliability process

are the time-dependent values

DU

DU_t

DU_n

DU_r

DU_rd

DU_ra

DU_rc

E_d

E_dn

E_dr

DII

DH_n

DH_r

DI_t

DI_n

DI_r

D

d

CU

CU_t

CU_n

CU_r

CU_rd

= Overall documentation units goal
= Total number of documentation units built

= New documentation units built

= Acquired reused documentation units
= Reused documentation deleted units

= Reused documentation additional units

= Reused documentation changed units

= Human errors putting defects in all documentation

= Human errors putting defects in new documentation
= Human errors putting defects in reused documentation

= Total documentation hazard, weighted defects

= New documentation hazard, weighted defects

= Reused documentation hazard, weighted defects

= Inspected portion of all documentation, in units

= Inspected portion of new documentation, in units

= Inspected portion of reused documentation, in units
= Documentation defects detected

= Documentation defects corrected

= Overall goal for code units
= Total number of code units built

= New code units built

= Acquired reused code units
= Reused code deleted units

JPL 91-7 19

CU_ra = Reused code additional units

CU_rc = Reused code changed units

v._f = Human errors putting faults in all code

g_fn = Human errors putting faults in new code

E_fr = Human errors putting faults in reused code

CH = Total code hazard, weighted defects

CH_n = New code hazard, weighted defects

Clt_r = Reused code hazard, weighted defects

CI = Inspected portion of all code, in units

CI_n = Inspected portion of new code, in units
CI_r = Inspected portion of reused code, in units

e = Code faults detected in inspection

h = Code faults corrected (healed)

C = Test Cases prepared

c = Test cases expended
F = Failures encountered during testing

A = Failures Analyzed for fault

f = Faults isolated by inspection and testing

w = Faults needing rework, revalidation, etc.

u = Faulty repairs

R = Fault repairs undertaken

V = Validations conducted of fault repairs
RT = Retests conducted

r = Faults actually repaired

rr = Faults re-repaired

"Documentation units" and "code units" are typically counted in pages of

specifications and lines of source code, but other conventions are acceptable,

provided that rate functions and parameters of the rood61 are consistently de-
fined.

Other status metrics facts of interest are

t

r[i]

cpu[i]

outage

active

= Current time.

= Cumulative time consumed by activity i.

= Cumulative work effort consumed by activity i.

= Cumulative CPU or other computer resource consumed by ac-
tivity i.

= Total outage time due to failure.

= Boolean indicator, true if the process has not yet terminated.

Note that the time-related activities above which measure times in days are

expressed as elapsed wall-clock time. Conversions to effort in workdays and to

CPU (or other) computer resource utilization in resource-days are model-related
and addressed in the next Section.

20 JPL 91-7

4.2 The Simulation Input Parameters

The reliability process we have described is fairly comprehensive with respect to

what really transpires during software development. The capability to mirror

that process in a simulator will require a large number of parameters relating to

the ways in which people and processes interact. If the number of parameters

in the simulator seems overwhelming, remember that the true process is even

more complicated; reducing the number of parameters can reduce the fidelity of

the simulation. Uncertainty about the values of parameters reflects the lack of

metrics in projects to date and our ignorance of the underlying physical process.

The Softrel model parameters are the following:

dt

workday_fraction

doc_ne__size

doe_reuse_base

doe_reuse_deleted

doe_reuse_added

doe_reuse_changed
doe_build_rate

doc_reuse_acq_rate

doc_reuse_del_rat e

doe_reuse_add_rate

doc_reuse_chg_rate

defects_per_unit

reusedefect_rate

del_defect_rate

add_defect_rate

chg_defect_rate

hazard_per_defect

nee_doc_inepect_frac

reuee_doc_inspect_frac

insp_doc_unite_per_workday
find_rate_per_defect

defect_fix_rate

= simulation time increment

= average days worked per schedule day per
individual

= new documentation units

= reused document units

= documentation units deleted from reuse

base
= documentation units added to reuse base

= documentation units changed in reuse

= new documentation units per workday

= reuse acquisition rate, documentation units

per workday

= reused documentation deletion rate, units

per workday

= reused documentation addition rate, units

per workday

= reused documentation change rate, units

per workday

= defects generated per documentation unit

= initial defects per unit in reused documen-
tation

= defects inserted per deleted unit

= defects inserted per added unit

= defects inserted per changed unit
= document hazard units added or removed

per defect injected or corrected

= fraction of new documentation inspected

= fraction of reused documentation inspected
= inspected documentation units per workday
= fraction of documentation defects detected

per inspected unit

= corrected documentation defects per work-

day

JPL 91-7
21

def • ct_f ix _adequacy

new _def ect s_per _f ix

doc_del_per_defect

doc_add_per_def ect

doc_chg_per_defect

code_new_size

code_reuse_base

code_reuse_deleted

code_reuse_added

code_reuse_changed

code_build_rate

code_reuse_acq_rate

code_reuse_del_rate

code_reuse_add_rate

code_reuse_chg_rate

faults_per_unit

reuse_fault_rate

del_fault_rate

add_fault_rate

chg_fault_rate

faults_per_defect

miss_doc_fault_rate

hazard_per_fault

new_code_inspect_frac

reuse_code_inspect_frac

insp_code_units_per_workday

find_rate_per_fault

fault_fix_rate

fault_fix_adequacy

new_faults_per_fix

code_del_per_fault

code_add_per_fault

code_ch__per_fault

tests__en_per_workday

tests_used_per_day

= true documentation fixes per correction

= defects created per correction

= documentation units deleted per correction

= documentation units added per correction

= documentation units changed per correc-

tion

= new code units

= reused code units

= reused code units deleted

= code units added to reuse base

= code units changed in reuse base

= new code build rate, code units per workday

= reused code acquisition rate, code units per

workday

= reused code deletion rate, code units per

workday

= reused code addition rate, code units per

workday

= reused code change rate, code units per

workday

= faults generated per code unit

= initial reuse faults per unit

= faults inserted per deleted unit

= faults inserted per added unit

= faults inserted per changed unit

= faults inserted per document defect density

= faults inserted per code unit generated per

missing documentation fraction

= code hazard units added or removed per

fault injected or repaired

= fraction of new code inspected

= fraction of reused code inspected

= inspected code units per workday

= fraction of faults detected per inspected

unit

= corrected code faults per workday

= true fault fixes per correction

= faults created per correction

= code units deleted per fault

= code units added per fault

= code units changed per fault

= test cases generated per workday

= test cases consumed per computer resource

unit

22 JPL 91-7

f allure_rat e_per_f ault

miss_code_fail_rate

prob_observation

prob_outa_s

outage_time_per_failure

analysis_rate

analysis_adequacy

repair_rats

repair_adequacy

new_faults_per_rspa/r

validation_rate

find_rats_per_fix

retes__rate

retest_adequacy

schedule

= failures per resource day per fault density

= failures per resource unit per missing code
fraction

= fraction of failures actually observed

= fraction of failures causing testing outage

= outage delay after failure, days

= failures analyzed per workday

= faults recognized per failure analyzed
= attempted fault repairs per workday

= true repairs per attempted repair

= faults created per attempted repair

= repairs validated per workday

= detected bad repairs per validation per un-

repaired fault

= retested validated faults per workday

= detected bad repairs per retest per unre-

paired fault

= pointer to schedule item packets

When the work effort expended by an activity is needed, it may be computed

by using the instantaneous staffing, or work force, function s(a,t) defined for
each such activity _ over the time periods of applicability. The corresponding

work effort w(a, T) over a time interval (0,T), for example, is

T

w(a, T) = Yo s(a, t) dt (20)

In Softrel, s(c_,t) is coded as staffing(A, p, M), where A is the activity, p

points to a facts structure, and Mpoints to a model.

Similarly, if computer CPU time, or another computer resource, is required

in calculating the event-rate functions above, it is found through the conversion

function q(a,t), which is defined for each activity a as the CPU or resource

utilization per wall-clock day. The CPU resource usage over the time interval

(0, T), for activity a, for example, is

Tcpu (a, T) = q(a, t) at (21)

The function q(a, t) in Softrel appears as resource(A, p, _!), with the same

arguments as staffing, above.
The number of wall-clock days may be interpreted either as literal calendar

days, or as actual workdays. These alternatives are selected by proper designa-

tion of the model parameter, workday_fraction. A value of unity signifies that

time and effort accumulate on the basis of one workday effort per schedule day

per individual. A value of 5/7 means that work effort and resource utilization

JPL 91-7 23

accumulate on the average only during 5 of the 7 days of the week. A value

of 230/365 denotes that 230 actual workdays span 365 calendar days. These

compensations are made in the staffing and resource functions, above.
Activities of the life cycle are controlled by the staffing function. No progress

in an activity takes place unless it has an allocated work force. If, however,

staffing is non-zero, event rates involve s(a,Q when work effort dependencies

exist, and q(a, t) when CPU dependencies are manifest.

Staffing and computer resource allocations in the model are made via the
schedule list of schedule item packets, each of which contains

activity = index of the work activity

t_begin = beginning time of the activity, days

t_end = ending time of the activity, days

staffing = staff level of the activity, persons

cpu = resources available, units per day

next = pointer to next schedule item packet

The entire list is merged by the staffing and resource-utilization functions,

s and q, or staffing and epu in the program, to provide scheduled workforce
and computer resources at each instant of time throughout the process. Both

staffing and cpu express resource units per project day. If the schedule quin-

tuples include weekends, holidays, and vacations, then staff and resource values
must be compensated so that the integrated staff and resources over the project
schedule are the allocated total effort and resource values. This is done via the

parameter workday_fraction discussed above.

4.3 The Simulation Algorithms

The extension of the algorithms in Section 2 to include all the events, activi-
ties, model parameters, and status facts is now fairly straightforward, as will
be demonstrated. The model structure parameters are available through the

pointer variable M, and the facts about a particular project are referenced via
the pointer p. The overall program structure is

/. INITIALIZE */

...

while (p->active)

{ p->t += M->dt ;
/* SET CURRENT STAFF AND RESOURCE LEVELS */

...

/* DOCU_NT COMSTRUCTIOli*/

...

/* DOCU_NT INTF__RATIDN */

24 JPL 91-7

/*

• o

/*

.,

/*

• °

/*

,.

/*

°.

/*

• .

/*

.°

/*

• o

/*

• o

/*

/*

.°

/*

.°

/*

. ,

}

DOCUI_NT INSPECTION */

DOCUMENT C0PJIECTION */

CODE C0NSTRUCTION */

CODE INTEGRATION */

CODE INSPECTION */

CODE CORRECTION */

TEST PREPARATION */

TESTING */

FAULT IDENTIFICATION */

FAULT REPAIR */

VALIDATION OF REPAIRS */

RETESTING */

DISPLAY OF RESULTS */

Each ellipsis (...) above indicates a body of code performing the indicated

function. Each function is visited at each iteration; if staff is assigned, the

function is performed and the status is recorded. Each will be described in

turn.

4.3.1 Initialization

We begin by setting the event goals for construction, integration, and inspection.

We could just equate the goal values to those given in the model, but the model

values are probably only approximate anyway. Rather, we assume these events
are produced by a pieeewise-Poisson process, with the model values as means:

DU_n = produce(M->doc_new_size) ;

DU_r = produce(M->doc_reuse_base) ;

DU_rd ffiproduce(M->doc_reuse_deleted) ;

DU_ra ffiproduce(N->doc reuse_added) ;

DU_rc ffiproduce(N->doc_reuse_changed) ;

DU_rt = DU_r - DU_rd + DU_ra;

p->DU = DU_n + DU_rt;

DI_n - M->nee_doc_inspect_frac * DU_n;

JPL 91-7 25

DI_t " DI_n + N->reuse_doc_inspect_frac * DU_rt;

nev_doc_frac ,. DI_n / Dl_t;

CU n z

CU_r =

CU_rd -

CU_ra =

CU_r£ ,,

CU_rt =

p->CU =
CI_n -

produce (M->code_new_size) ;

produce (M->code_reuse_base) ;

produce (N->code_reuse_delet ed) ;

produce (N->code_reuse_added) ;

produce (N->code_reuse_changed) ;

CU_r - CU_rd + CU_ra;

CU_n + CUrt;

N->nev_code_inspect_fra¢ , CU_n;

CI_t = CI_n + N->reuse_code_inspect_frac * CU_rt;

new_code_fra¢ - CI_n / CI_t;

outage = O. ;

randomize(-!, O) ;

The latter two statements reset the test outage indicator to 0 and seed the
random number generator with a randomly chosen value. Note that the goal

q,_antities bear the same identifiers as do their p-structure counterparts. This
is a notational convenience, but may be confusing if the dereferencing "p->" is
unnoticed.

4.3.2 Set Current Stafl_ng and Resource Levels

The staffing(A, p, M) functionservestwo purposes: When invoked with A

set to the SET_LEVELS activitydesignation,itcomputes and storesfor later
access allthe staffand resource levelsfor the remainder of the activitiesat

the currenttime. When calledwith A set to a particularactivitydesignation,

the staffingfunctionreturnsthe value of the currentstaffleveldevoted to that

activity.The code inthe main loop ismerely

staffing(SET_LEVELS, p, N);

The staffing function computes the work force and resources by following the

M->schedule chain of schedule quintuples input from the file of model parame-

ters and adding together for each activity the quantities allocated in the current

time slot. The workday_fraction parameter multiplies both staffing and re-

source levels to align the time and effort scales.

4.3.3 Document Construction

Document generation and integration are assumed to be piecewise-Poisson pro-

cesses with constant mean rates per workday specified in the model not to exceed

the goal values. Defects are injected at a constant probability per documentation
unit. If later studies indicate that the documentation rate is nonhomogeneous,

the defects_per_unit parameter will have to be changed into function form,
as are all the rate functions in the current simulator. In order for the select()

26 JPL 91-7

function to be probabilistic, it is necessary that the defects_per_unit value

be made less than unity by proper choice of documentation units. For example,

if the documentation unit is chosen as the page, then there must be less than

one defect per page, on the average. If there are more, then a smaller portion

of a page should be chosen as the documentation unit.

At each injection of a defect, the document hazard increases according to

the following defect detection characteristic, which is discussed further under

Document Inspection.

process(p->DU_n, DU_n, rate(p, M, DOC_CONSTRUCTION, ANY), n);
if (n > 0)

{ i = select(n, M->defscts_per_unit);

add_hazard(i, DOC, NEW, p, M);
}

The rate() function supplies the document construction A(t0, tl) values for the

given project status p, model M, and activity. The additional argument ANY is

unused here, but selects among subactivities in integration phases. The rate()

function also serves to accumulate time, work effort, and computer resource

utilization totals across major activities.

4.3.4 Document Integration

Document integration consists of acquisition of reusable documentation, dele-

tion of unwanted portions, addition of new material, and minor changes. Each

of these subactivities is assumed to be a goal-limited piecewise-Poisson process

of a type similar to the construction process described above. Defects are cre-

ated as a result of each subactivity. Documentation is integrated at a constant

mean rate per workday, and defects are injected at a constant probability per

documentation unit. Hazard increases at each defect according to the defect
detection characteristic assumed.

process(p->DU_r, VU_r, rate(p, M, DOC_INTEGRATION, BASE), n);
i=O;

if (n > O)

i += select(n, M->reuse_defect_rate);

process(p->DU_rd, DU_rd, rate(p, M, DOC_INTEGRATION,

DELETION), n) ;

if (n > O)

i +- select(n, M->del_defect_rate);

process(p->DU_ra, DU_ra, rate(p, M, DOC_INTEGRATION,

ADDITION), n) ;

if (n > O)

i +- select (n, M->add_defect_rate) ;

process(p->DU_rc, DU_rc, rate(p, M, DOC_INTEGRATION,

CHANGE), n) ;

if (n > O)

i += select(n, M->chg_defect_rate) ;

JPL 91-7 27

if (i > O)

add_hazard(i, DOC, BASE, p, M);

p->DU t = p->DU_n + p->DUr + p->DU_ra - p->DU rd;

doc_frac - 1. - (double) p->DU_t / (double) p->DU;

The total current documentation units consist of new, reused minus deleted,

and added units; changes are deemed not to alter the total volume of documen-

tation. The document completion fraction doc_frac is later used to influence

the fault-injection rate, a lower fault rate corresponding to a higher fraction of

documentation completed.

4.3.5 Document Inspection

Document inspection is a goal-limited piecewise-Poisson process, of a type sim-

ilar to document construction; both new and integrated reused documentation
are assumed to be inspected at the same rate, and with the same efficiency.

Documentation is inspected at a mean constant rate per workday. Inspected

units are allocated among new documents and reused documents in proportion

to the relative amounts of documentation in these two categories.
Defects detected may not exceed those injected; the discovery of defects is

characterized as a goal-limited binomial process. The defect discovery rate is
assumed to be proportional to the current accumulated document hazard and

the inspection efficiency. Since previously discovered defects may not have been

corrected at the time of rediscovery, the number of newly discovered defects is

assumed to be proportional to the number of undiscovered defects.

process(p->Dl_t, Dl_t, rate(p, M, DOC_INSPECTION, ANY), n);

if (n > O)

{ find(p->DI_n, DI_n, n, new_doc_frac, i);

p->DI_r += n - i;

find(p->D, p->E d, n, inspect elf(p, M, DOC) *

new defect_frac(p, M), n);

}

4.3.6 Document Correction

Defect corrections are produced at a rate determined by the staff level and at-
tempted fix rate given in the model; actual corrections take place according to
the defect fix adequacy, not to exceed the actual number of defects discovered
(a goal-limited binomial situation). Attempted fixes can also inject new defects,
and can change the overall amount of documentation via the numbers of doc-

umentation units deleted, added, and changed. True corrections decrease the
document hazard, while the injection of new defects increases it.

n = produce(rate(p, M, DOC_CORRECTION, ANY));

if (n > 0)

{ find(p->d, p->D, n, M->defect_fix_adequacy, £);

28 JPL 91-7

remove_hazard(i, DOC, p, M) ;

i - select(n, M->nee_defects_per_fix) ;

add_hazard(i, DOC, ANY, p, M);

p->DU_rd += produce(i * N->doc_del_per_defect);

p->VU_ra += produce(i * N->doc_add_per_defect);

p->VU_rc += producs(i * N->doc_chg_per defect);

4.3.7 Code Construction

Production of code follows the same formulation as does document construction.

However, the average pace at which faults are created is influenced not only by

the usual number of faults_per_unit that may occur as a normal consequence
of coding, but also by the density of undiscovered defects in documentation, and

by the amount of missing documentation. This average pace must not exceed

one fault per code unit. The code unit must be defined to make this possible.
For example, if the code unit is chosen to be a line of code, we should not expect

to see more than one fault per line of code, on the average.
Each fault injected increases the code hazard. But whereas document defects

are only found by inspection, code faults may be found both by inspection and
testing, and at different rates. When a certain hazard is injected during code
construction, the means by which that fault will later be detected is unknown.
The simulator reported here currently assumes that the hazard functions of
faults found by inspection and by testing are related by a constant factor.

process(p->CU n, CU_n, rate(p, N, CODE_CONSTRUCTION, ANY), n);

if (n > 0)

{ pace - N->faults_per_unit

+ N->faults_per defect * (p->E d - p->D) / p->VU / n

+ N->aiss_doc_fault rate • doc_frac;

i - select(n, pace);

add_hazaord(i, CODE, NEW, p, N);

4.3.8 Code Integration

Simulation of code integration is comparable in structure to document integra-
tion, except that code units replace document units, and coding rates replace
documentation rates. The fault injection rate is of the same form as that for

code construction, above. The pace of fault injection must not exceed one fault
per code unit. Each fault increases the code hazard.

process(p->CU_r, CU_r, rate(p, N, CODE_INTEGRATION, BASE), n);

i-O;

if (n > O)

i +" select(n, N->reuse_fault_rate) ;

process(p->CU_rd, CU_rd, rate(p, M, CODE_INTEGRATION,

DELETION), n) ;

JPL 91-7 29

if (n > O)

{ pace - M->del_fault_rate

+ N->faults_per_defect * p->E_dr / p->DU / n

+ M->miss_doc_fault_rate s doc_frac;

i +- select(n, pace);

}

process(p->CU_ra, CU_ra, rate(p, M, CODE_INTEGRATI0W,

ADDITION), n) ;

if (n > O)

{ pace - M->add_fault_rate

+ M->faults_per_defect * (p->E_d - p->D) / p->DU / n

+ M->miss_doc_fault_rate * doc_frac;

i +I select(n, pace);

}

process(p->CU_rc, CU_rc, rate(p, M, CODE_INTEGRATION,

CHANGE), n) ;

if (n > 0)

{ pace - M->chg_fault_rate

+ M->faults_per_defect s (p->E_d - p->D) / p->DU /n

+ M->miss_doc_fault_rats * doc_frac;

i +- select(n, pace) ;

}

p->CU_t - p->CU_n + p->CU_r + p->CU_ra - p->CU rd;

add_hazard(i, CODE, BASE, p, M);

4.3.9 Code Inspection

Code inspection mirrors the document inspection process, except that the num-
ber of faults discovered will not exceed the total number of as yet undiscovered

faults. The fault discovery rate is assumed to be proportional to the current
accumulated fault hazard and the inspection efficiency. Since previously dis-
covered faults may not yet have been removed at the time of discovery, the
number of newly discovered faults is assumed to be in proportion to the number
of undiscovered faults.

process(p->CI_t, CI_t, rate(p, M, CODE_INSPECTIOM, ANY), n);

if (n > O)

(find(p->CI_n, CI_n, n, ne._code_frac, i);

p->CI_r +- n - i;

find(p->e, p->E_f -p->f, n, inspect_elf(p, N, CODE)

new_fault_frac(p, M), n) ;

}

4.3.10 Code Correction

Code correction simulation follows the same algorithm given for document cor-
rection, translated to code units. Fault hazard is reduced upon correction of
a fault, and increased if any new faults are injected by the correction process.

30 JPL 91-7

Documentation changes are produced at assumed constant mean rates per at-

tempted correction.

n ffiproduce(rate(p, N, CODE_CORRECTION, ANY));

if (n > O)

{ find(p->h, p->e, n, M->fault_fix adequacy, i);

remove_hazard(i, CODE, p, N);

£ " select(n, N->nee_faults_per_fix);

add_hazard(i, CODE, ANY, p, M);

p->CU_rd +- produce(n * N->code_del_per_fault) ;

p->CU_ra +- produce(n * M->code_add_per_fault) ;

p->CU_rc +- produce(n * M->code_chg_per_fault);

4.3.11 Test Preparation

Test preparation consists merely of producing a number of test cases in each

dt slot proportionate to the test preparation rate, which is a constant mean

number of test cases per workday.

p->C +- produce(rate(p, N, TEST_PREPARATION, ANY)) ;

4.3.12 Testing

The testing activity simulation has two parts: If a test outage is in effect,

decrement the outage indicator and count the time and effort during the outage.

If an outage is not in effect, produce failures at the modeled rate; the number

observed is computed as a binomial process that is regulated by the probability

of observation. Of those observed, a select number will cause outages with the

given model probability of outage. The outage time per failure is assumed to

be constant; this restriction can be lifted when more of the statistical nature of

outages is learned.

The failure rate function returns a value proportional to the current hazard

level. The function additionally consumes computer resources and test cases,
the latter at a mean constant rate.

if (outage > 0.0)

{ outage -- (x - fmin(outage, M->dt));

p->T[TESTING] += x;

p->W[TESTING] += M->staffing(TESTING, p, M) * x;
}

else

{ p->F += (n = select(produce(rate(p, M, TESTING, ANY)),

M->prob_observation)) ;

if (n > O)

{ outage ffiN->outage_time_per_failure *

select (n, N->prob_outage) ;

p->outage += outage;

JPL 91-7 31

}
}

4.3.13 Fault Identification

The total number of failures analyzed may not exceed the number of hilures
observed. Failures are analyzed at a mean constant rate per workday. The iden-
tification of faults is limited in number to those still remaining in the system.

The isolation process is regulated by the fraction of faults remaining undis-
covered, the adequacy of the analysis process, and the probability of faithful
isolation.

process(p->A, p->F, rate(p, M, FAULT_ID, ANY), n);

if (n > O)

find(p->f, p->E_f - p->h, n.

new_fault_frac(p, N) * N->analysis_adequacy, i);

4.3.14 Fault Repair

The number of attempted repairs may not exceed the number of faults identi-
fied by inspections and testing, less those corrected after inspection, plus those
identified for rework by validation and retesting. Of those attempted, a select
number will really be repaired, while the rest will mistakenly be reported as
repaired. Repairs are assumed here to be made on faults identified for rework
first. A select number of new faults may be created by the attempt, and
code units may be altered (deleted, added, or changed). Attempted repairs take
place at a mean constant rate per workday. Changes to documentation, at an
assumed constant mean rate per repair attempt, may be required.

process(p->R, p->e- p->h + p->f + p->w, rate(p, N, REPAIR, ANY), n);

if (n > O)

{ p->r += (i = select(n, M->repair_adequacy)) ;

if (i > p->.)

{ p->rr += p->w;

p->_ = 0 ;

}
else

{ p->rr += i;

p->w -= i;

p->u += n - i;

remove_hazard(i, CODE, p, M);

i = select(n, M->new_faults_per_repair) ;

add_hazard(i, CODEr ANY, p, M);

p->CU rd += prodnce(n * M->code_del_per_fault) ;

p->CU ra += produce(n * N->code_add_per_fault) ;

p->CU rc += produce(n * M->code_chg_per_fault) ;

32 JPL 91-7

4.3.15 Validation of Repairs

The validation of attempted repairs takes place at an assumed mean constant

rate per workday. The number of repairs validated may not exceed the number

of attempted repairs. The number of faulty repairs detected is a select number

determined by the probability that validation will recognize an unrepaired fault

when one exists and the probability that unrepaired faults are among those at-

tempted repairs being validated (the repair inadequacy); the detected bad fixes

cannot exceed the actual number of mis-repaired faults. Those that are detected

are scheduled for rework and removed from the unrepaired, undiscovered fault
count.

process(p-->V, p->R, rate(p, M, VALIDATION, ANY), n);
if (n > O)

{ pace ffi M->find_rate_per_fix * (1. - M->repair_adequacy));

i " ninval((value) select(n, pace, p->u);
p->e +- i;

p->u-ffi i;

}

4.3.16 Retesting

Retesting takes place at a mean constant number of retests per workday and

consumes computer resources at the scheduled rate per day. No test cases are

generated (or consumed), the assumption being that cases are already available

for regression. Retesting is assumed to encounter only those failures due to

unrepaired faults.

The number of retests may not exceed the number of validations. The num-

ber of bad fixes discovered by retesting will be a select number of the retests,

which is regulated by the probability that a retest will discover the bad fix

and the probability that a bad fix is among those attempted repairs retested.

The latter probability is the probability that a bad fix was generated times the
probability that validation missed the bad fix.

process(p-->RT, p->V, rate(p, M, RETESTING, ANY), n);
if (n > O)

{ pace - I. - M->repair_adequacy;

pace *- M->reteet_adequacy * (I - M->find_rate_per_fix * x);

i - minval((value) select(n, pace, p->u);

p->s +- i;

p->u -ffi i;

4.4 Output and Display of Results

Softrel outputs to the standard device stdout and optionally to a file, when so

named on the command line. When enabled, the first two records of the output

JPL 91-7 33

file are strings bearing the name of the model file and the date the output was

generated.
The display and writing of the status facts at each time increment is han-

dled by the statement

show(p, M) ;

which writes the entire p structure to stdout and to the optional file, if selected.

Writing thus occurs at each dt interval for display and use by other software

programs.
The output file, when named on the command line, takes the form

model file name
date

/acts*

The first line in the file is a string giving the name of the model file that

created the output and is terminated by a newline. The second line is the date

that output was created, also terminated in a newline. The remainder of the

file is made up of facts structures, one for each dt interval computed by the

simulator. These are written in struct form,

facts *p;
,.,

:fwrite(p, sizeo:f(:facts), 1, p);

4.5 Preliminary Rate Functions

This Section presents the forms of the rate functions chosen for initial studies.
The assumptions of the simulation are that all hazards are time-independent
over short dt intervals and that event hazards are proportional to the numbers

of event generators. For example, failure hazards are assumed to be proportional

to the number of remaining faults.
The structure of the rate function is principally a switch that selects the

rate characteristics for each given phase and subphase:

if ((staff " staffing(phase, p, N)) IS 0.0)

return O. 0 ;

switch (phase)

{ case DOC_CONSTRUCTIDN :

..,

case DOC_INTEGRATION :

switch (subphase)

{ case BASE:

.o.

case DELETION:

34 JPL 91-7

case ADDITION:

°**

case CHANGE:

.,.

)

break ;

case DOC_INSPECTION:

,.,

case TESTING:

°,,

case FAULT_ID:

.,°

case REPAIR:

,..

case VALIDATION:

°°.

case RETESTING:

..°

}

p->T[phase] += dr;

p->W[phase] += staff * dt;

p->cpu[phase] += resource(phase, p, M) * dt;

return (pace , dt);

4.5.1 Document Construction Rate

The pace of constructing new documentation units is assumed to be proportional
to the build-rate model parameter; however, the number of new units must not
exceed the new-unit bound DUn. The work_fraction function is used to reduce

dt to a value that prevents this from occurring.

case DOC_CONSTRUCTION:

pace = staff * M->doc_build_rate;

dt *= work_fraction(pace, dt, DU_n - p->DU_n);

break;

4.5.2 Document Integration Rate

Document integration takes place in four subphases: (1) a base activity, in which
documentation for reuse is acquired, (2) a deletion activity, in which portions
are deleted, (3) an addition activity, in which new portions are added to the
existing packages, and (4) a change activity, in which documentation units are
altered in a way that does not affect size. The dt interval is apportioned among
each activity in the phase, according to the relative magnitudes of the rate

JPL 91-7 35

functions and modified by the work_fraction function, so that the numbers of
acquired, deleted, added, and changed units do not exceed their goal values.

case DOC_INTEGRATION:

switch (subphase)

{ case BASE:

a = work_fraction(M->doc_reuse_acq_rate, dr,

DU_r - p->DU_r) ;

b - work_fraction(M->doc_reuse_del_rate, dt,

DU_rd - p->_J_rd) ;

c = work_fraction(N->doc_reuse_add_rate, dr,

DU_ra - p->[_J_ra) ;

d - work_f tact ion(M->doc_reuse_chg_rat e, dt,

DU_rc - p->DU_rc) ;

if ((A = a + b + c + d) <= 0.)

return 0. ;

dt *= a / A;

pace = staff * M->doc_reuse_acq_rate;

break;

case DELETION:

if (A <= 0.)

return 0.;

dt *- b / A;

pace ffi staff * M->doc_reuse_del_rate;

break;

case ADDITION:

if (A <=0.)

return 0.;

dt *= c / A;

pace = staff * M->doc_reuse_add_rate;

break;

case CHANGE:

if (l <= 0.)
return 0.;

}

break ;

dt *- d / A;

pace - staff * M->doc_reuse_chg_rate;

4.5.3 Document Inspection Rate

Document inspections are assumed to examine a certain average number of units
per day, with an inspection limit DI_t not to be exceeded.

case DOC_INSPECTION :

36 JPL 91-7

pace - staff * M->insp_doc_m_its_per_workday;

dt *- uork_fraction(pace, dt, Dl_t - p->Dl_t);

break;

4.5.4 Document Correction Rate

Document correction takes place at a fixed average rate, but the corrected de-

fects may not exceed the number of defects so far discovered.

case DOC_CORRECTIOI :

pace - staff * M->defect_fix_rate;

dt *- work_fraction(pace, dt, p->D - p->d);

break;

4.5.5 Code Construction Rate

Like documentation, new code construction takes place at a constant mean rate,

but may not exceed the target number of code units CU_n.

case CODE_CONSTRUCTION:

pace - staff * M->code_build_rate;

dt *- work_fraction(pace, dr, CU_n - p->CU_n);

break;

4.5.6 Code Integration Rate

Code integration simulation mirrors documentation in form, but difl'ers in units,

rates, and limits.

case CODE_INTEGPOITION :

suitch ($ubphase)

{ case BASE:

a - work_fraction(M->code_reuse_acq_rate, dr,

CU_r - p->CU_r);

b - work_fraction(M->code_reuse_del_rate, dt,

CU_rd - p->CU_rd) ;

c - work_fraction(M->code_reuse_add_rate, dt,

CU_ra - p->CU ra) ;

d = work_fraction(M->code_reuse_chg_rate, dr,

CU_rc - p->CU_rc) ;

if ((A - a + b + c + d) <- 0.)

return O. ;

pace - staff * M->code_reuse_acq_rate;

dt *- a / A;

br e ak;

case DELETION :

if (A <- 0.)

return O. ;

JPL 91-7 37

pace - staff • N->code_reuse_de1_rate;

dt *- b / A;

break;
case ADDITION:

if CA <- o.)

return O. ;

pace - staff * H->code_reuse_add_rate;

dt *- c / A;

break;

case CHANGE :

if (a <- 0.)

return O. ;

pace - staff * M->code_reuse_chg_rate;

dt *- d / A;

}

break;

4.5.7 Code Inspection Rate

As with documentation, code is assumed to be inspected at a constant mean

rate, but may not exceed the allocated inspection limit CI_t.

case CODE_INSPECTION:

pace ffistaff * N->insp_code_units_per_eorkday;

dt *ffiwork_fraction(pace, dt, CI_t - p->CI_t);

break;

4.5.8 Code Correction Rate

Code faults detected in inspections are assumed to be corrected at a constant

mean fix rate, but the number h fixed (healed) may not exceed the number e

found by inspections.

case CODE_CORRECTION:

pace - staff * M->fault_fix_rate;

dt *= work_fraction(pace, dr, p->e - p->h);

break;

4.5.9 Test Case Preparation Rate

Test cases are generated at a constant mean rate per applied workday.

case TEST_PREPARATION:

pace ffistaff * M->tests_gen_par_workday;

break;

38 JPL 91-7

4.5.10 Test Failure Rate

If no code units exist, or if no CPU resource is available, testing cannot take

place. If code units do exist and if testing can take place, the number of test

cases that will be needed is determined from the case usage per CPU hour and

the allotted CPU time. However, the number of test cases used may not exceed

the number prepared above, less those that have been previously used in testing.

(We assume that regression testing takes place in the retest phase, below; all

new test cases are used in the testing phase.) When the unperformed tests are

exhausted, testing ceases (dr is shortened). The number of test cases applied

adds to the cumulative test case usage.

There are two contributors to failures: (1) the hazard injected per code

unit and (2) the hazard that missing code will be encountered during a test.

The former assumes a constant average failure rate per resource unit expended

per fault per code unit (essentially a Jelinski-Moranda model using CPU time,

rather than clock time, as in Musa [4]), and the latter assumes a constant average

number of failures per resource unit expended per fraction of the total code so

far produced.

case TESTING :

if (p->CU_t IS 0 OR (cpu = resource(TESTING, p, M)) IS 0.0)
return 0.0;

cases - produce(case_use_rate(p, M) * cpu * dt);

if (cases > (n ,. (double)(p->C - p->c)))

"[dt .z n / cases;

cases -- n;
)

if (cases <= 0.)

return 0. ;

p->c +-- (value) cases;

code_frac = 1. - p->CU_t / p->CU;

pace ,, (M->failure rate per_fault * p->CH / p->CU +

M->aiss code fail_rate * code frac) * cpu;
break;

4.5.11 Fault Identification Rate

Failure analysis and fault identification take place at an assumed constant av-

erage rate, if there are failures to analyze; but the number A of failures that can

be analyzed may not exceed the number F encountered so far during testing.

case FAULT_ID:

pace m staff * M->analysis_rate;

dt *= work_fraction(pace, dt, p->F - p->A);
break;

JPL 91-7 39

4.5.12 Fault Removal Rate

Fault repair, or removal, takes place at the same assumed constant average
repair rate as the code correction activity, above. The number of repairs and
corrections may not exceed the total number of faults discovered through testing

and inspections.

case REPAIR:

pace = staff * M->repair_rate;

dt *= work_fraction(pace, dr, p->e + p->f - p->r - p->h);

break ;

4.5.13 Repair Validation Rate

Validation of repairs is assumed to require a constant average effort per valida-
tion. However, the number V of validations may not exceed the number R of
repairs.

case VALIDATION:

pace = staff $ M->validation_rate;

dt *ffiwork_fraction(pace, dt, p->R - p->V);

break ;

4.5.14 Retesting Rate

Retesting takes place at a constant average number of retests per applied re-
source unit. The number RT of retests may not exceed the number V of repairs
validated.

case RETESTING :

pace = resource(RETESTING, p, N) * M->retest_rate;

dt *= work_fraction(pace, dr, p->V - p->RT) ;

break ;

_Ulr

JPL 91-7 41

5 EXAMPLE AND COMMENTARY

This Section presents the results of a simple hypothetical project to illustrate

the simulated reliability process. The individual model parameters are listed in

the Appendix. The salient characteristics of the project are that it will generate

about 750 pages of documentation (500 pages new, 250 pages reused) and 15K

lines of code (10K lines new and 5K lines reused) over a period of 450 days

(interpreted as 90 weeks at 5 days per week). Some of the parameters have
been obtained from historical data; other values are anecdotal, believed to be

typical, but unsubstantiated; still others were arbitrarily chosen to illustrate a

certain behavior believed to occur in projects, such as the injection of faults in

the repair and correction processes, where the author had no readily available

data. None of the model parameters is zero.

Figures 1 through 4 show the documentation, code, defect, and fault status

during the project period. Of particular note is the smoothness of the rise
of documentation and code during construction and integration. Because the

numbers of units are comparatively large, the relative noise levels are low, as

predicted from Eqs. 10 and 19. Although unsubstantiated by actual data as of

this writing, it is doubtful that this seemingly linear behavior reflects actuality.
The reason may be schedule irregularities: people generating documents and

code do not exclusively dedicate their time to this activity every day of the

applicable phases. They have other duties during these periods as well. If such
effects were programmed into the model schedule fine structure, the construction

and inspection processes could easily look more erose.

Figure 1 shows that the volume of documentation did reach its goal, but in

this case, only about 70% of the documentation was actually inspected, even

though the model placed a goal of 90% on inspection. More resources would

have been required to reach the goal. The effects of correcting defects on page
count are not visible.

Figure 2 similarly shows that the volume of code did reach its goal and that

tile 90% inspection goal was met as well. The effects of correcting and repairing

faults on code size, however, are again not visible.

The injection and removal of defects, shown in Figure 3, are a little noisier,
but not much. All the detected defects were corrected (D = d), but a sizable

number of defects were inserted during the correction period (days 130-150).

Finally, more than 150 defects were left in the documents.
The fault activity is shown in Figure 4. It exhibits the noisiest behavior

of all, but is still fairly regular. The initial rise in injected faults is due to

construction; the second rise due to integration; the third, a sharp rise again, is

due to the imperfect fault correction process; and the final, gradual rise, is due

to the imperfect fault repair process. By the end of the 450-day project, about

8 faults per kiloline of code had been found in inspections and corrected, and

about 7 faults per kiloline of code had been uncovered by testing and removed;

the fault density at delivery was about 7 errors per kiloline of code.

PRECEDING PAGE BLANK NOT FILMED

42 JPL 91-7

700

600

5OO

400

300

200

i00

0
0

D

O

C

U

m

e

n

t

a

t

1

O

n :

..

"2

DU

DU t

DI t"

DU n

DIn

I00 200 300 400 500

time, days

Figure 1: Document Construction, Integration, and Inspection.

JPL 91-7 43

14000

12000

i0000

8000

6000

4000

2000

0
0

C

0

d

e

I I I

| ,

CI t

•. :

• ;

"..

:.'
...

t I , , , , I i i i i I i ' ' ' I K , i

i00 200 300 400

time, days

CUn

CI n

CUr
CI--r

I I

500

Figure 2: Code Construction, Integration, and Inspection.

44 3PL91-7

200

150

i00

5O

I

°

I I I I

E d

D

e

f

e

c

t

s

J

/

E dn

D d

•., E_dr

.--_-_

0 , J , , "l j i L i l J , , , l _ , , i I J , , , I

0 i00 200 300 400 500

time, days

Figure 3: Defect Discovery and Correction.

JPL 91-7 45

4ooi

300

200

i00

I I

F

a

u

1

t

s

I i i

_E f -

.

. E_fn

°..

.°

./

.° .,-
.° _-

.° .,,,_ 2"

." . J

."

0 I,,,,I,
0 i00 200

r+h

f

h e
r

E fr

. /

7"

,,,_lllilzJ,,l,

300 400 506

time, days

Figure 4: Fault Injection, Discovery, Correction, and Repair.

JPL 91-7 47

6 CONCLUSION

Whether a model can be found that will simulate an actual project with the

current Softrel rate functions is yet to be determined. However, even simulations

using hypothetical data raise some serious questions in the mind of the author,
not about what an actual project's model parameters will be, or what tuning

should be applied to the rate functions, but on the fundamental issue of whether

the "usual assumptions" listed earlier really do apply to the software reliability

process. Are all the theoretical Poisson and exponential models fundamentally

wrong? Real projects seem far more random than the simulated hypothetical

fault process appears to be. 2

One means for making simulations noisier, if that turns out to be warranted,

is to randomly alter the schedule assignments at a fine level to depict irregular

attention on the part of project personnel to reliability process matters. To

the author's knowledge, such measures are not present in any of the "usual"
mathematical models.

If regular schedules are assumed and if simulations are not as noisy as reality,

then the underlying failure model cannot be Poisson, nor piecewise Poisson, nor

perhaps even Markoff. Independence among faults and time increments implies
that relative fluctuations behave as O(1/v/'ff), a quantity that gets increasingly

smaller for larger n. It seems likely, therefore, that simulation of document
and code construction and integration processes will require irregular schedule

models.

If irregular schedules are assumed, then the processes can be made to be
as noisy as desired merely by matching process irregularities with schedule as-

signments. By linking nonhomogeneous piecewise-Poisson processes with ran-
domly scheduled resources, we may be able to simulate actual highly fluctuating

projects. That possibility will be explored and incorporated when, and if, later
studies indicate that it is necessary.

At this point in time, of course, these questions are mere concerns and
the commentary, mere speculation. The construction phase of Softrel has just

completed its first prototype form. Validation of the simulation technique, the

Softrel tool, and model parameters are yet to come. At this time, however,

enough theory seems to be at stake to warrant review, as a first part of that
validation.

Metric data collection of document size, code size, defect, failure, and fault

data from open literature, and from industry and Jet Propulsion Laboratory

(JPL) sources, has begun, but no significant inference of project parameters in
the model, nor comparisons of measured project behavior against the simulator

results, have been made at this time.
Future collaborations with industry, other National Aeronautics and Space

Administration centers, and with JPL colleagues are expected. Through such

_This is an impression only. No effort has been made yet to validate this conjecture.

PRECF..DI,",tG PAGE BLANK NOT FILMED

48 JPL 91-7

collaborations will come refinements to the simulation technique, better un-

derstanding and predictability of the reliability process, improvements to the

,3oftrel tool, and better characterization of what real project models are like.

In conclusion, this publication argues that we can simulate whatever we

perceive reliability processes to be, including processes with multiple event cat-

egories, complex subprocess interdependencies, highly dimensional factors of in-

fluence, and schedule and resource dependencies. Evidence demonstrating that

this can be done has been presented, subject to a few fundamental assumptions,

such as the independence of events (e.g., failures) in non-overlapping time in-

tervals. The assumptions made here are certainly weaker than those underlying
the "usual" prediction models.

The initial SoRrel prototype has further assumed, for simplicity only, that

defect and fault injections and removals take place with constant hazards per
defect and fault. Other hazard functions will be investigated once sufficient

project data have become available. The simulator has been designed so that
its rate functions can be rather easily changed. Future reports will be made on
such refinements when they occur.

JPL 91-7 49

7 REFERENCES

[1] Mellor, P, "Software reliability modeling: the state of the art," Informa-

tion and Software Technology, Vol. 29, No. 2, March, 1987.

[2] Jelinski, Z., and Moranda, P. B., "Software reliability research," in Statis-

tical Computer Performance Analysis, Freiburger, W., Ed., Academic

Press, New York, NY, 1972, pp. 465-484.

[3] Dale, C. J., "Software reliability evaluation methods," British Aerospace

Dynamics Group, Rep. ST-26750, 1982.

[4] Musa, J., et al., Software Reliability, McGraw-Hill Book Co., New York,

NY, 1987.

[5] Shooman, M. L., Software Engineering, McGraw-Hill Book Co., New

York, NY, 1983, pp. 296-403.

[6] Abdel-Ghaly, A. A., et al., "Evaluation of Competing Software Reliability

Predictions," IEEE Trans. on Software Engineering, Vol. SE-12, No.

9, September 1986, pp. 950-967.

[7] Levendel, Y., "Defects and Reliability Analysis of Large Software Systems:
Field Experience," Proc. Nineteenth International Fault-Tolerant

Computing Symposium, Chicago, IL, June, 1989.

[8] Papoulis, A., Probability, Random Variables, and Stochastic Pro-

cesses, McGraw-Hill Book Company, New York, NY, pp. 534-551.

[9] Kreutzer, W., System Simulation: Programming Styles and Lan-

guages, International Computer Science Series, Addison-Wesley Publish-

ing Co., Menlo Park, CA, 1986.

[10] Roberts, N., et al., Introduction to Computer Simulation, Addison-

Wesley Book Co., Reading, MA, 1983.

[11] Knuth, D., The Art of Computer Programming: Semi-Numerlcal

Algorithms, Addison-Wesley Book Co., Reading, MA, 1970, pp. 550-554.

JPL 91-7 51

APPENDIX

HYPOTHETICAL EXAMPLE

((05131190) (hypothet.prj)

**

Copyright 1990 (C) California Institute of Technology

All rights reserved. U. S. Government sponsorship under NASA

Contract NAS-918 is acknowledged.

, Robert C. Tauseorthe *

• Jet Propulsion Laboratory *

, Pasadena, CA 91109 *

SOFTWARE PROJECT RELIABILITY PARAMETERS

NOTE: The appearance of digits, plus signs, minus signs, and periods in

this file is limited to occurrences in numbers only, or else within text

surrounded by braces, as in this note. Text and other characters

outside braces are ignored. The numbors appearing in this file are

recognized in sequential order. }

model sampling time interval, days:

work fraction, workdays/schedule day/staff:

2.

1.

new documentation units:

reused documentation units:

reused documentation units deleted:

reused documentation units added:

reused documentation units altered:

500.

250.

50.

25.

20.

new documentation build rate (doc units/uorkday):

reused documentation acquisition rate (doc units/uorkday):

reused documentation deletion rate (doc units/workday):

reused documentation addition rate (doc units/workday):

reused documentation alteration rate (doc units/workday):

new documentation defect generation rate (defects/doc unit):

reused document initial defect content (defects/doc unit):

reused document deletion defect rate (defects/doc unit):

2.5

10.
10.

2.5

2.5

0.3

0.03

0.3

PRECEDING PAGE BLA_K NOT FILMED

52 JPL 91-7

reused doctment addition defect rate (defects/doc unit):

reused docmsent alteration defect rate (defects/doc unit):

doctment hazard units added/renoved per defect (hazard/defect):

nee docunentation inspection fraction (inspected/total units):

reused docmtent inspection fraction (inspected/total units):

docunent inspection rate (doc units/eorkday):

document inspection adequacy (defects found/defects present):

defect correction rate (defects/workday):

defect correction adequacy (corrections/attenpt):

defect correction reinsertion rate (new defects/attempt):

documentation deleted per correction (doc units/attempt) :

docunentation added per correction (doc units/attempt):

docunentation altered per correction (doc units/attenpt):

new code units:

reused code units:

reused code units deleted:

reused code units added:

reused code units altered:

new code build rate (codeunits/uorkday):

reused code acquisition rate (code units/eorkday):

reused code deletion rate (code units/workday):

reused code addition rate (code units/eorkday):

reused code alteration rate (cede units/gorkday):

nee code fault generation rate (faults/code unit):

reused code initial fault content (faults/cede unit):

reused code deletion fault rate (faults/cede unit):

reused code addition fault rate (faults/code unit):

reused code alteration fault rate (faults/cede unit):

fault rate due to defective docunentation (faults/defect):

fault rate due to hissing doc (faults/code unit/doc fraction):

code hazard units added or removed per fault (hazard/fault):

nee code inspection fraction (inspected/total units):

reused code inspection fraction (inspected/total units):

code inspection rate (code units/workday):

code inspection adequacy (faults found/faults present):

fault correction rate (faults/eorkday):

fault correction adequacy (corrections/attempt):

fault correction reinsertion rate (faults/attempt):

code deleted per correction (cede units/attenpt):

code added per correction (code units/attempt):

code altered per correction (code units/attempt):

0.3

0.3

1.

0.9

0.9

11.

0.6

2.

1.

0.3

1.

1.

1.

10000.

5000.

1000.

500.

250.

50.

SO00.

200.

SO.

50.

0.02

0.001

0.02

0.02

0.02

0.9

0.05

1.

0.9

0.9

143.

0.6

9.

0.9

0.2

10.

10.

10.

JPL 91-7 53

test case generation rate (test units/eorkday):

test case utilization rate (test units/resource day):

50.

8.

fault failure rate (failures/resource day/faults per code unit): 300.

miss code failure rate (failures/resource day/miss code frac): 300.

failure observation rate (observed/occurred):

failure outage rate (outages/failure):

outage rate (outage days/outage failure):

0.9

0.1

0.5

failure analysis rate (failures analyzed/eorkday):

fault identification rate (faults recognized/failure analyzed):

10.

0.9

fault repair rate (fault repairs/gorkday):

fault repair adequacy (true repairs/attempt):

fault repa/r reinsertion rate (nee faults/attempt):

2.

0.9

0.3

repair validation rate (attempted repaire/eorkday):

validation adequacy (detections/validation/eisrepair):

10.

0.9

retest rate (retested faults/eorkday):

retest adequacy (detected mierepairs/retest/misrepair):

8.

0.9

SCHEDOIE

start, finish, actiTity, staff, resource units/day

O, 90, DOC_CONSTRUCTION O, 2.5, 0.0

90, 110, DOC_INTEGRATION 1, 2.5, 0.0

110, 130, DOC_IISPECTION 2 2.5, 0.0

130, 150, DOC_CORRECTION 3, 2.5, 0.0

150, 240, CODE_CONSTRUCTION 4, 2.5, 0.0

240, 250, CODE_INTEGRATION 5, 2.5, 0.0

260, 300, CODE_INSPECTION 6, 2.5, 0.0

300, 310, CODE_CORRECTION 7, 2.5, 0.0

300, 450, TEST_PREPARATION 8, 0.4, 0.0

300, 450, TESTING 9, 0.4, 1.0

300, 450, FAULT_ID 10, 0.4, 0.0

300, 450, REPAIR 11, 0.4, 0.0

300, 450, VALIDATION 12, 0.4, 0.0

300, 450, RETESTING 13, 0.4, 1.0

1. Report No. 91-7
2. Government Accession No.

4. Title and Subtitle A General Software Reliability

Process Simulation Technique

7. Author_) Robert C. Tausworthe

l

9. Per_rming Organization Name and Addr_s

JET PROPULSION LABORATORY

California Institute of Technology

4800 Oak Grove Drive

Pasadena, California 91109

12. SpomoringAgency Name and Addre_

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546

TECHNICAL REPORT STANDARD TITLE PAGE

3. Reclplent'$ Catalog No.

5. Report Date
April i, 1991

6. Performing Organ|zaHon Code

8. Performing Organization Report No.

J0. Work Unit No.

1. Contract or Grant No.

NAS 7-918

13. Type of Report and Period Covered
External RepOrt
JPL Publication

14. Sponsoring Agency Code
REI56 BK-506-59-II-01-00

15. Supplementary Notes

16. Abstract

This report describes the structure and rationale of the generalized software

reliability process, together with the design and implementation of a computer

program that will simulate this process. Given assumed parameters of a particular

project, the users of this program are able to generate simulated status timelines

of work products, numbers of injected anomalies, and the progress of testing,

fault isolation, repair, validation, and retest. Such tlmelines are useful, in

comparison with actual timeline data, for validating the project input parameters,

and for providing data for researchers in reliability prediction modeling.

17. Key Wor_ GelecMd by Author_))

Mathematical and Cemputer Sciences

Computer Programming and Software

Operations Research

Statistics and Probablitiy

9. Security Classif. _f this report) 1
|

Unclass___iiJ

18. Distribution Statement

Unclassified; unlimited

20. Security Clclsif. (of this page)] 21. No. of Pages

Un_ 53

PRECEDING PAGE BLAN, K NOT F_LMED

22. Price

.tPL 0184 R 911_

